
Open Source Python GIS Hacks Page: 1
Geometry Operations: OGR and GEOS 6/16/2005

Geometry Operations: OGR and GEOS
The GEOS library

 http://geos.refractions.net

provides the spatial predicates originally used in PostGIS, now OGR, and soon
MapServer. In this exercise we'll explore unions, intersections, differences,
buffers, and work our way up to the task of creating a buffered union of many
features from a shapefile.

Matplotlib

Along the way we are going to use the matplotlib package for visualization of
our results. This is matlab-like software that is attracting a lot of attention from
Python users. If we have time at the end of the workshop, some of you may be
interested in digging deeper into matplotlib.
>>> from matplotlib import pylab
>>> pylab.plot()
[]
>>> pylab.show()

This creates an output window into which we'll render geometries.

Geometries
Let's create two simple, overlapping polygons using the same string
interpolation and WKT factory method as in the previous exercise:
>>> r1 = {'minx': -5.0, 'miny': 0.0, 'maxx': 5.0, 'maxy':
10.0}
>>> r2 = {'minx': 0.0, 'miny': -5.0, 'maxx': 10.0, 'maxy':
5.0}
>>> template = 'POLYGON ((%(minx)f %(miny)f, %(minx)f %
(maxy)f, %(maxx)f %(maxy)f, %(maxx)f %(miny)f, %(minx)f %
(miny)f))'
>>> w1 = template % r1
>>> w2 = template % r2

You could print these to verify. Next we import the ogr module and use its WKT
factory to create instances of ogr.Geometry:
>>> from gdal import ogr

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 2
Geometry Operations: OGR and GEOS 6/16/2005
>>> g1 = ogr.CreateGeometryFromWkt(w1)
>>> g2 = ogr.CreateGeometryFromWkt(w2)

Plotting
Initially we downloaded a helper file named plot.py. It contains two functions
for plotting geometries in the matplotlib window.
>>> from plot import plot_poly, plot_line
>>> plot_poly(g1, color='green', alpha=0.25)
>>> plot_poly(g2, color='blue', alpha=0.25)

The result should be something like

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 3
Geometry Operations: OGR and GEOS 6/16/2005

Intersection
Let's try the Intersection() and Buffer() methods of ogr.Geometry first.
>>> inter = g1.Intersection(g2)
>>> buffered_inter = inter.Buffer(0.5)
>>> plot_line(buffered_inter, color='red')

The result:

Union
Now the Union() method.
>>> union = g1.Union(g2)
>>> buffered_union = union.Buffer(1.0)
>>> plot_line(buffered_union, color='cyan')

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 4
Geometry Operations: OGR and GEOS 6/16/2005

and the results

Lifelike Geometries
Let's close up that output window and move on to less artificial geometries. At
c:\ms4w\python\data\world_borders.shp is a world borders shapefile
derived from VMAP0 by Schuyler Erle, Rich Gibson, and Jo Walsh. We'll use the
OGRFeatureIterator class from the fiter.py helper module to select several of the
features from this shapefile:
>>> from fiter import OGRFeatureIterator
>>> filename = r'c:\ms4w\python\data\world_borders.shp'

Now, define a spatial bounding box and an OGR attribute filter to constrain
features. The GEOS Union() operation is very slow, and we don't want to wait
for too many polygons.

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 5
Geometry Operations: OGR and GEOS 6/16/2005
>>> bounds = (-10.0, 30.0, 20.0, 60.0)
>>> attrfilter = "fips_cntry = 'UK'"

Next, we create a list to hold selected features, and declare the name u, for our
union geometry, to begin with the value None.
>>> geoms = []
>>> u = None

The following iteration appends each selected geometry g and builds up the
union of all selected geometries. Iterators are a very common construct, and a big
component of Python flavor. The if/else blocks below ensure that we begin
our union geometry as the clone of a selected geometry, and clone only once.
>>> for g in OGRFeatureIterator(filename, bounds,
attrfilter):
... geoms.append(g)
... if u:
... u = u.Union(g)
... else:
... u = g.Clone()
...
>>>

Now, let's plot the selected geometries using the previously imported
plot_poly() function.
>>> for g in geoms:
... plot_poly(g, color='green', alpha=0.25)
...
>>>

the result

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 6
Geometry Operations: OGR and GEOS 6/16/2005

Now, buffer the union and plot it. This is a fairly lengthy operation ...
>>> buffer = u.Buffer(1.0)
>>> plot_line(buffer, color='red')
>>>

The results

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 7
Geometry Operations: OGR and GEOS 6/16/2005

Continuation
In the workshop's extra time, some of you may want to try saving these
geometries to a file using ogr.py as we did in the previous tileindex exercise, and
display them in OpenEV. Some may be interested in grabbing some features via
WFS and plotting them in the same window with the buffered UK features.

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

