
Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Modelling techniques for
spatial information using free

and open source tools
Patrick Browne, School of Computing, Dublin Institute

of Technology ,Kevin Street, Dublin 8, Ireland.
Mike Jackson, School of Computing and Information,

University of Central England, England.
(references in main paper)

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Outline
• Motivation. Why model?
• Brief outline of tools

– ArgoCASEGEO
– USE
– CafeOBJ

• Simple maps
• A software representation of the maps
• Description of tools and how they represent classes,

attributes, associations and spatial data and spatial
relationships.

• Commercial system
• Conclusion

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

What is a GIS?

• Bittner and Frank 1999, state that
• “GIS is an implementation of formal

theories of geographic space”.
• This fits in with our view that formal

specifications are of central
importance in GIS.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Nature of geo-data and geo-
processes

• Geographic information is complex:
– It is heterogeneous, metric, topological,

thematic, and time varying.
– Needs to be stored, queried, and updated,

which entails the specification of a database
schema.

• Modelling can help develop applications,
standards, systems, and contributes to our
understanding of complexity.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Geo-data and processes need to be designed
using the appropriate techniques.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Models
• We can view a model

– as a toy (a prototype)
– as an ideal (obeying axioms)

• Models are required so that we can better
understand a domain of interest and the system
we are developing to operate in that domain.

• Where to formalize?
– At specification level
– At program level

• An important model is the` computation specified
by a program.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Fundamental importance of a
model

• In computing: no information or computation without
representation and representations describe models.

• Cantwell Smith (Cantwell-Smith 1985) says
• “Models are ubiquitous not only in computer science but

also in human thinking and language ; their very
familiarity makes them hard to appreciate .”

• “To build a model is to conceive of the world in a certain
delimited way.”

• “A program is an explicit description of a model
contained inside the computer”

• Do we model explicitly or implicitly?

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Why Model?

• Geo-data is very expensive to collect and
maintain, hence in order to maximize
potential usage its representation needs to
be in canonical form capable of serving a
wide range of applications.

• Having a ‘formal semantic’ or sound model
reduces the problems of interoperability.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Why Model?
• Models help us to visualize a system as it is or

as we want it to be.
• Models permit us to specify the structure or

behaviour of a system.
• Models give us a template that guides us in

constructing a system.
• Models document the decisions we have made.
• Emergence of the Model Driven Architecture

(MDA).
– intellectual value lies in the model.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Who Models?

• Standards Bodies: OGC, ISO, local
authorities, national and international
bodies.

• The geo-researcher.
• Mapping Agencies.
• User Communities.
• Academic and commercial GIS builders.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Levels of Modelling

Ontology engineering
Conceptual data modelling
Database Schemas
Model refinement
Algorithm design
Program design
Modelling access methods

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Levels of Modelling
• Gruber describes ontoogies as: “formal, explicit specification of a

shared conceptualization”.
• Ontologies provide generic and task-independent view of the world.

They focus on more abstract rules such as totality, rigidity and
identity. They are formally agreed logical theories which can be
shared between many different applications. Designing an ontology
involves “considering the subjects separately from the problems or
tasks that may arise or are relevant for the subject”

• Conceptual data modelling (CDM) specifies the structure and
integrity if data sets. Building a data model for an organisation
usually depends on the specific needs and tasks that have to be
performed within this organisation. Data modelling semantics are
generally created as without any formal agreement between user
communities.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

The value of a formal model
• The main advantages of a formal model are

expressiveness, precision, composition, and formal
models match the type of mathematical components
common in GIS.

• Currently geo-standards are expressed using a semi-
formal approach, namely the UML.

• Leading geo-researcher Frank and Kuhn state that “GIS
is stretching current software design methods to the
break point”.

• Though we focus on formal aspects, in practice “sliding
scale of formality” may be more appropriate (structured
English, UML/OCL, type checking, algebraic
specification, refinement and proofs).

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Why an executable model?
• A formal and expressive language is needed to

precisely and concisely define systems. This
could be a high level formal specification or at a
lower level of abstraction computer program.
However at some point English requirement
must be formalized, by either a designer or a
programmer. Early validation can be provided
by an executable specification which gives
immediate feedback of the design decisions
encoded in the specifications

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Approaches and Tools

• Objected Oriented:
– ArgoCASEGEO + USE

• Algebraic and logic based
– CafeOBJ

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Object Oriented Tools
• Diagrams: ArgoCASEGEO (Lisboa, Sodré et al.

2004) extends the Unified Modelling Language
(UML). It adds spatial and temporal types to the
basic UML.

• Executable Specification: USE is an Object
Constraint Language (OCL) tool (Richters 2006).
Constraints can be written and tested against
instances.

• Together these tools represent the object
oriented paradigm.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Algebraic Specifications
• CafeOBJ is an algebraic executable

specification language called CafeOBJ
(Diaconescu, 1999).

• CafeOBJ in many ways is a much more
expressive language than UML/OCL, it is both a
specification language and a functional
programming language. Models are
represented by sorts (e.g. sets) and operations
(e.g. functions) on those sorts. The operations
are represented as mathematical equations. No
graphics.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Simple Maps

Figure 1(a) and 1(b)

Black = Road

Blue = Administrative Region

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Description of Map
• If we first consider the lines as pure ‘geometry’ then,

individual lines have the metric property of length. The
lines can be composed to form a path. Paths with some
special properties (i.e. cycles) can form boundaries of
regions. We can reason about paths and boundaries
using graph theory. Now consider Figure 1(a) as a
topographic object we will consider the lines as road
section that can be traversed as a path which also has a
length (the length of the sum of its line segments).
Hence we are combining in a very simple and informal
way the metric, graph theoretic, and thematic information
about a topographic object that we wish to consider as a
road section.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Another Map
• A thematic object has a different meaning compared to its component

geometric objects. Consider the beside relationship Road 1 is beside Field
1 and Field 2 and forms part of their boundaries so points 1 and 2 must
exist. Roads do not split regions, so the road has no explicit beside
relationship with Administrative Region 1 and does not need points 1 and 2.

Figure 2 Map 2

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Classes and Associations Map 1(a)
in USE

Classes Associations

model BasicSpatial
class Point
attributes
x : Integer
y : Integer
end
class Line
end
class Path
end
class Polygon
end

-- a line must have two points
-- a point can be in zero or many lines.
association
Line_Point between

Line[0..*]
Point[2] ordered

end
association Polygon_Path between

Polygon[0..*]
Path [1..*] ordered

end
association
Path_Line between

Path[0..*]
Line[1..*] ordered

end

Figure 3 shows the class
diagram generated by the
USE tool.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Object and Association Creation in
USE

-- create objects for figure 1(a)
!create p1 : Point
!create p2 : Point
!create p3 : Point
!create l1 : Line
!create l2 : Line
!insert (l1,p1) into Line_Point
!insert (l1,p2) into Line_Point
!insert (l2,p2) into Line_Point
!insert (l2,p3) into Line_Point

-- create extra for figure 1(b)
!create p4 : Point
!create p5 : Point
!create l3 : Line
!create l4 : Line
!create l5 : Line
!insert (l3,p2) into Line_Point
!insert (l3,p4) into Line_Point
!insert (l4,p4) into Line_Point
!insert (l4,p5) into Line_Point
!insert (l5,p5) into Line_Point
!insert (l5,p3) into Line_Point

USE has three languages 1) a Java like class definition language
2) OCL and 3) a command languages for creating objects and
associations. The USE model is somewhat like a UML package,
but only one model at a time can be opened in the USE tool.

Above are the commands needed to construct an instance of the
maps in Figures 1(a) and 1(b). Figure 5 shows object diagram (i.e.
an instance). It is also possible to construct interaction diagrams
for say an update operation with the USE tool.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Object Diagram Map 1(b) in USE

Figure 4 shows object diagram (i.e. an instance). It is also possible
to construct interaction diagrams for say an update operation with
the USE tool.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Using Association Classes in USE

Figure 5. A map class definition and instance diagram
representing the topology of the map.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

OCL Constraints
• Constraints are rules we want to be true in our specification and ultimately

in our system. For example, multiplicities that establish how points, lines
and polygons may be related. USE does not allow duplicate instances of an
association. Hence in our geometry there are no duplicate lines between
points, if we tried to make the same point a start and end of the same line
USE would tell us that the association already existed. This constraint could
be expressed explicitly as:

context Line DistinctStartEnds inv:
-- constrains the two ends of a Line to be different
point -> forAll(p1,p2 | p1 <> p2)
• If we entered the command
• check DistinctStartEnds
• The USE tool would examine the current instance diagram and report

whether or not the constraint had been violated. This is a static constrains
(called an invariant) which must be true for all instances of a class. USE can
use more dynamic constraints on operations called pre-conditions and
post-conditions.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

OCL Queries
• Here is an example of a simple query that

returns any roads named Main Street.
-- using a variable put two roads into a set.
!let roads = Set{r1,r2}
-- query to find all main streets
?roads ->select(r : Road | r.name = 'Main
Street')

• We can define an operation in the Polygon class
that finds triangles as follows:
getTriangles() : Set(Polygon)
= Polygon.allInstances->

select(p : Polygon | p.line->size = 3)

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Logic in USE
• Logic
• The querying and general assertion mechanism is based on first order

predicate calculus. Querying can use a variety of techniques such as
navigation via associations (or attributes), quantified statements (forAll,
exists). OCL also has collections such as sets and sequences which can to
an extent simulate a database. The limitations of OCL (and hence USE) as
a database are described by Mandel and Cengarle {Mandel, 1999}. OCL
uses logic but is not based on logic.

• Other features.
• USE has a monitor and generator features which allow validation and

testing of a software implementation against the UML/OCL model. The USE
tool can model Aspect Oriented Programming (AOP) and facilitates
mappings between different abstraction levels of software. In order to keep
things simple we have not presented any details on state and behavior
(attribute values and operations that change those values). USE does
support such concepts and allows users to construct snapshots of a system
and examine in detail the changes that may occur between snapshots.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Summary of USE
• Use allows the user to construct executable specification, which can

be refined to the level of a simple prototype. The prototypes are very
high level and are not committed to any particular programming
language or database system. However USE does follow the object
oriented (OO) paradigm and hence favours an OO implementation.
There are tools that do code generation, converting high-level
constrains in OCL to Java programs {Dresden, 2006}. USE allows
the analyst to explore ideas, to construct models, and prototypes
without the labour of programming or setting up a database. It is
particularly useful for exploratory work where the available software
does not support a required feature (e.g. experimenting with various
temporal theories for GIS). We found that the interactive nature of
tools like USE is an important factor in clarifying and constructing
conceptual models (e.g. studying update).

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

ArgoUML
• ArgoUML, a free open source UML modeling

tool. It is compatible with UML 1.3 and Java. It
can read XMI V1.1 and Java class definitions
and it can create UML class diagrams. Fig 6
represents an approximation of the OpenGIS
Simple Features Specification for CORBA
(Department of Geography, University of Bonn).
The diagram was generates semi-automatically
by ArgoUML. This example shows how
ArgoUML can be useful in understanding a
complex class hierarchy.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

ArgoUML

Figure 6. OGC Simple Features reversed engineered from JAVA code

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

ArgoUML
• Models can be saved as ArgoUML projects, XMI

interchange format, or graphic files. ArgoUML uses XMI
V1.1 and Poseidon uses XMI V1.2, ArgoUML. Importing
ArgoUML models into Poseidon is fairly straightforward.
You unzip the ArgoUML project file (.zargo) and extract
the XMI file, which is loaded into Posiedon via the project
menu. Going in the other direction can cause problems.
Meta Integration (MetaIntegration, 2006) provides a
commercial solution to XMI conversion, which permits
you to import Rational Rose and Poseidon models into
ArgoUML.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

ArgoUML
• ArgoUML does not supports association classes or object diagrams

(only in a limited way via component diagrams).
• ArgoUML parses OCL statements and maintains the OCL code for a

particular model. To make full use of OCL it needs to be brought into
(via cut and paste) USE tool where objects can be instantiated and
constraints can be executed.

• OCL does not support specialized spatial or temporal constraints.
• These two pieces of open source software work very well together,

ArgoUML providing the diagramming facilities and USE provide the
more formal expression of rules and the ability to check those rules.

• Using standard UML the user can represent spatial objects, but they
are very much on their own unless they have spatial libraries.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

ArgoCASEGEO
• The general modelling facilities of ArgoUML have been extended to

by Lisboa et al to handle the modelling of geo-data. The formal
model behind ArgoCASEGEO is the UML-GeoFrame. This is an
extension to the UML which adds a spatial object view (points, lines
and polygons) and a spatial field view (grids and TIN) to the basic
object modeling provided by the UML.

• Figure 7 from Lisboa et al describes the architecture of
ArgoCASEGEO. It uses the UML-GeoFrame conceptual model
rather than the more standard OGC/ISO standard. It outputs XMI,
ESRI’s ArcView 3.2 shape files, Intergraph’s GIS environment
GeoMedia, OGC and a GIS class library called TerraLib.
ArgoCASEGEO uses transformation rules to map from the UML-
GeoFrame to the various output formats. The shape files can be
used as ‘empty layers’ in ESRI products such as ArcExplorer or
open source products such as OpenMap. ArgoCASEGeo will
transform the UML-GeoFrame version of Point, Line and Polygon to
the ESRI format.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

ArgoCASEGEO

Figure 7 The ArgoCASEGEO Tool Architecture

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Class diagram and

Stereotypes,

UML-GeoFrame Model

The conceptual framework used by
ArgoCASEGEO is UML-GeoFrame

UML-GeoFrame

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Packages and Stereotypes

• The use of packages and stereotypes
greatly reduce the clutter on the diagram.
Rather than including complete class
hierarchies stereotypes are used.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Packages and Stereotypes

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Profiles
• A profile is an extension to the core UML that keeps the

UML meta-model intact, in other words it obeys the rules
of UML. A UML profile is a subset of UML that is
necessary and sufficient for a given development effort
(e.g. Testing, WAP, or GIS). UML profiles are defined in
the UML infrastructure volume of UML 2.0. Profiles are
packages that are linked to other packages in a model
by using the <<apply>> dependency. Model elements
in the model package can then use the features that are
in the profile, typically stereotypes. Profiles are
supported in Rational Rose but not ArgoUML.

• The profile concept is similar to CafeOBJ module
composition but without the formal underpinning of
Category Theory.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Profiles (complex)

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Spatial Relations
• The UML-GeoFrame does not include spatial relation

(e.g. contains, crosses). Filho et al feel that spatial
relationships add unnecessary complexity to class
diagram making it difficult for the user and developer to
understand. Also, if they are formalized at the conceptual
level then they must represent a complete and accurate
set of relationships, this is not an easy task. The number
of possible topological relationships can become very
high. There is the difficulty of deriving meaningful names
for these relationships. Also it may be hard for users to
remember the appropriate usage.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Spatial Relations

• Consider the Table on the next slide from
Clementini et al. The authors describe
spatial relations such as "touch" and
"overlap" between points, lines and areas.
By enumerating all possible combinations
and removing those which cannot be
drawn in space there are still 52 relations!

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Spatial Relations
Relation Between Number Possible Actual Number

area/area 24 9

line/area 24 17

point/area 4 3

line/line 24 18

point/line 4 3

point/point 2 2

TOTALS = 82 52

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Spatial Relations
• The stereotypes below from the UML-GeoFrame are used to indicate line and

polygon. The user needs to be able to map these high level concepts to lines
and polygons as implemented by the target system (e.g. PostGIS).

• Assume the spatial relationships bounds and disjoint (not implemented in
ArgoCASEGEO) have their intuitive meanings. The meaning of such a
relationship is much more complex than the basic UML association. Standard
associations cannot express conditional constraints which are needed to
express disjoint. Hence to define topological constraints more precisely
requires OCL (e.g. in USE) or algebraic expressions (in CafeOBJ). The
precise meaning of the bounds relationship depends on UML-GeoFrame
relationship between lines and polygons.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Spatial Relations

• Spatial objects have complex relations
which present a challenge for the basic
UML association. Fiis-Christensen et al
summarized the following relationships
from the GIS literature:

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Spatial Relations
Topological relationships Binary topological relationships include contains, overlaps, passes trough, and

touches

Metric relationships Metric relationships involve distance and depend on the absolute positions of
objects relative to a given reference system

Semantic relationships These are relationships among objects, relevant at the conceptual level, that are
neither topological nor metric. It could for example be that all land parcels have
road access, either directly or through an allowed access via a neighbour
parcel. When representing the objects in less expressive models, some
semantic relationship may be represented as a topological relationship

Part-of relationships. An object can consist of other objects. An example is a county consisting of
municipalities.

Relationship constraints. The relationship constraints are very important and are highly dependent on the
type of relation between objects. A constraint can be topological: for example, it
is not allowed to place a building in a lake. It is also important to be able to state
exceptions. In the above example, it is may be allowed to build a house on
pillars in a lake.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Spatial Relationships

• Recall, UML-GeoFrame is the spatial model
used in ArgoCASEGEO. UML-GeoFrame
models “semantic relations” which are
implemented as UML associations, aggregations
and compositions. For example, a building block
could contain several parcels, but what this
might mean in terms of spatial relations is not
required in the conceptual model. UML-
GeoFrame can express multiple
representations, a field view, an object view.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

CafeOBJ
• CafeOBJ is a much more expressive language than OCL, it is both a

specification language and a functional programming language. This
provides a “continuum of specification”. Models are represented by sorts
(e.g. sets) and operations (e.g. functions) on those sorts. The operations
are represented as mathematical equations. There are also conditional
equations which will only be evaluated if the condition is satisfied. The basic
CafeOBJ module has the following form:

module <ModId> {
[<SortId>] -- sort declaration
op <OpForm> : <SortList> -> <Sort> -- operation declaration
var <VarId> : <Sort> -- variable declaration
eq <Term> = <Term> . -- ordinary equation
ceq <Term> = <Term> if <Condition> . -- conditional equation
}

• Reduction , or executions, can be performed in one of several logics. For
example, the reduce command evaluates a term in equational logic.

• reduce [in <ModExp> :] <Term>

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

CafeOBJ
• A module expression allows a modules to be composed

in various ways. Invariants pre-conditions and post-
conditions can be expressed as equations. CafeOBJ
uses a variety logics, which allows us to model systems
in different ways.

• On the next slide is the CafeOBJ specification in Figure
1(a).

• We show the Line-Point association is implemented in
CafeOBJ.

• We show the how the CafeOBJ specification is
executable.

• We show how CafeOBJ can be used as a simple
functional language for prototyping.

• We show some queries
• Finally we will show how operations can change the

state of an object.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

CafeOBJ
CafeOBJ modules Associations

mod! POINT {
[Point]
pr(INT)
op x : -> Int
op y : -> Int
}
mod* LINE {
[Line]
}
mod* PATH {
[Path]
}
mod! MAKE-MAP {
pr(PATH-LINE)
pr(FOPL-CLAUSE)
ops p1 p2 p3 : -> Point
ops l1 l2 : -> Line
op path1 : -> Path
eq start(l1) = p1 .
eq finish(l1) = p2 .
eq start(l2) = p2 .
eq finish(l2) = p3 .
eq connectedPoints(p1 , p2)

= l1 .
eq connectedPoints(p2 , p3)

= l2 .
eq connectedLines(l1 , l2)

= path1 .
}

mod* LINE-POINT {
pr(POINT)
pr(LINE)
op start : Line -> Point
op finish : Line -> Point
op connectedPoints : Point Point -> Line
vars l1 l2 : Line
vars p1 p2 : Point
ceq connectedPoints(p1, p2) = l1 if p1 =/= p2 and finish(l1) == p2 and finish(l1) == p2 .
}
mod* PATH-LINE {
pr(LINE-POINT)
pr(PATH)
op _|_ : Line Line -> Path
op connectedLines : Line Line -> Path
vars l1 l2 : Line
var path1 : Path
ceq connectedLines(l1,l2) = path1 if (start(l2) == finish(l1)) .
}

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Associations in CafeOBJ.

The formal methods community have used algebraic techniques to
formalise parts of the UML. We use associations from Munakata and
Kokichi. Their basic approach is shown in the Figure below. It is a bit
like an association class.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

CafeOBJ
• Like OCL, CafeOBJ can be used to check or test models.

Expressions from executable equations can be evaluated using
equational logic. The following expression should evaluate to true

red finish(l1) == start(l2)

• CaféOBJ can be used as a functional programming language. For
example, the distance function can be defined as:

• eq d(x1 , y1, x2 ,y2) = sqrt(((x1 - x2) * (x1 - x2)) + ((
y1 - y2) * (y1 - y2))) .

• Then evaluating
• d(20.0,20.0,10.0,10.0) gives 14.142135623730951d0 : Float

• In principle such simple functions can be programmed in OCL but
OCL does not currently have a square root function.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Axioms of Metric Spaces
• A metric space has a function distance between the two points. For

A, B, C elements of X.

The distance is 0 if and only if the points coincide
d(A, B) = 0 if and only if A = B.

The distance from A to B is the same as the distance from B to A
d(A, B) = d(B, A)

the sum of two sides of a triangle is never less than the third side.
d(A,B)+d(B,C) >= d(A,C)

• Numbers, strings, metric spaces, sets, sequences, partial orders
and many mathematic frameworks can be encoded in CafeOBJ. We
can thus reuse mathematical concepts.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

CafeOBJ Metric Spaces
mod* METRIC1 {
pr (R2)
op d : Vect Vect -> Float
vars vx vy zx zy wx wy : Float
vars p1 p2 p3 : Vect
-- symmetry
eq d(p1 , p2) = d(p2 , p1) .
eq d(p1 ,p2) >= (0.0) = true .
-- reflexive
ceq d(p1, p2) = (0.0) if p1 == p2 .
-- triangle inequality
eq d(p1 , p2) + d(p2 , p3) >= d(p1 , p3) = true .

-- d(vx,vy) > 0 if (vx =/= vy) and d(vx,vx)=0 (non
negativity)

}

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Querying in CafeOBJ
• The query below asks does there exist a point, P1, that starts l1 in

Figure 1a.

goal \E[P1:Point] connectedPoints(P1,p2) == l1 .

• In this query , the logical variable P1 will be instantiated with a
constant if it can be found. In this case CafeOBJ will correctly find p1
(note lower case).

• The important point about this example is that it permits a form of
querying that can be applied to basic equations. It also extends the
basic theorem proving that is available in CafeOBJ beyond that
possible with pure equational logic (equational logic uses
substitution of equals for equals rather than the modus ponens of
FOPL as its main inference rule).

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Object Orientation in CafeOBJ
• CafeOBJ has two ways of represent OO semantic, hidden algebras

and rewrite logic. Rewrite logic uses ‘rules’ rather than pure
equations. The following rule represents a state transition of a one
dimensional point object P.

• rl moveRight(P , Dist) <P:Point|x = N> => < P: Point | x =
(N+Dist) > .

• This is executed with exec command which evaluates the
expression under rewrite logic.

• exec moveRight(P , 10) < P : Point | x = 10 > .
• the result
• < P : Point | x = 20 > : Point
• The position is appropriately updated. Further we can mix pure

equations and rewrite rules and conditional rewrite rules. In
CafeOBJ rewrite logic can be used for algebraic refinement, which is
supported by proof technologies. This idea is not found in UML/OCL.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

CafeOBJ Specifications

• The denotation CafeOBJ specification
represents a class of models or possible
implementations of the specification.

• Specifications are formal description of
certain class of models which exist as
abstract mathematical object.

• A specification can have one model (initial)
are several (loose).

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Signatures, Sentences, Models

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

CafeOBJ Specifications

• The previous shows that a ‘signature
morphism’, where a signature is mapped
to another signature or renamed.

• The CafeOBJ uses module expressions to
implement the concept of signature and
sentence translation.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

CafeOBJ module expression

• One or more imports
• Parameterized modules
• Translation
• Sums, and
• Views and parameter instantiation.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Algebraic module expressions

Constructing theories and models from components

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Summary of CafeOBJ

• An executable specification language
based on logic.

• Amenable to various types of theorem
proving, proof checking, and model
checking.

• Powerful module system

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

UML v Algebraic specifications

• The UML supplies a fair amount of implicit
knowledge, which has to be explicitly
represented in an algebraic specification.
This point is illustrated in the next slide
which shows how a UML diagram might
be formalized using an algebraic
specification (Bardohl and Taentzer 1997).

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

UML v Algebraic

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Algebraic Specifications
• Tools like CafeOBJ are often considered excessively

formal and difficult to use. However we feel:
• In GIS traditionally the core formalisms were analytical

geometry, and the closely relate measurement sciences
of surveying and geodesy. The presentation of the data
was handled by cartography which has a strong basis in
more subtle cognitive sciences. Though we do not
discuss it here algebraic approaches have strong links
to both mathematic and cognitive science.

• One big advantage of CafeOBJ is that specifications can
be composed preserving valid axioms. This is difficult
with most UML tools.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Commercial System
• ESRI’s users can model geo-data with Rational Rose

and Visio. These are fairly well integrated with ESRI’s
products.

• Visio uses templates to represent the ArcInfo UML
Model. This permits a fairly easy transition between UML
the GIS. Their object model has five packages:

• Logical View
• ESRI Classes
• ESRI Interfaces
• ESRI Network
• Workspace

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Interoperability between design
tools and other systems.

• By either open source or commercial standards
algebraic tools like CafeOBJ do not integrate with other
software such as databases, programming languages
and other CASE tools. This means it would be difficult to
import spatial model libraries (if they existed!). However,
they do integrate with the conceptual worlds of
mathematics and logic. At this stage they should be
considered as research tools and to be used in
applications where rigor and precision are required (e.g.
standards). They can also be used to help define
desirable criteria for spatial specification languages
themselves.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Interoperability between design
tools and other systems.

• The situation is a little better in the UML/OCL approach.
Notwithstanding the use of XMI for model interchange it
can still be difficult to move models between systems.
We may need to move models between CASE tool or
conceptual spatial frameworks. For example, Perceptory
(Bédard, 2006) is a free spatial-temporal modeling tool, it
is based on the proprietary MS Visio. It has UML profiles
for ISO-TC211 19110 (contents cataloguing) and ISO-
TC211 19115 (meta-data) spatial standards. Using
ESRI’s XMI exporter it should be possible to export
these profiles to ArgoUML. Open source tools tend to be
more difficult use with less point and click and more
manual bashing, code hacking and editing of
configuration files.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Conclusion
• It would be nice if there was a single

specification language that would be the
optimum choice for every possible use.
Unfortunately, the reality is that many languages
are necessary because of the fragmented nature
of computing (e.g. various paradigms such as
OO) and different application areas. We have
show two possible approaches to modeling the
geo-domain, namely the UML/OCL approach
and an algebraic approach using CafeOBJ. The
UML/OCL approach is well established in the
geo-domain and the IT community in general.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Conclusion
• OCL provides a semi-formal language in which many

useful constraints and queries can be expressed.
ArgoCASEGEO provides a good set of geographic
extensions to assist the GIScientist. Although this
approach lacks strict formality the graphic capability
make it very useful for initial requirement gathering.
However, it has too many limitations for large scale
applications such as the specification of the OGC
standard. There is a general move to formalized the
UML and make it more precise. Languages such as
CafeOBJ already have this precision.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Conclusion

• There are issues between models and
systems. For example a user would find it
difficult to use an ISO spatial standard if
the proposed GIS does not support it.
ArgoCASOGEO allows users to use the
UML-GeoFrame which can be converted
to the more implementation oriented ESRI
shape file format. Other tools such as
Perceptory can outputs data that conforms
to ISO models or Oracle tables.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Conclusion
• We feel that the main problems with the algebraic

approach are lack of graphics, they are difficult for users
or customers to understand, and lack of libraries for geo-
specification (but some are available in CASL).

• We feel that both algebraic and OO approaches are
useful at different stages and for different types of
project.

• The UML/OCL approach is fairly well integrated into the
general software environment but poorly integrated into
the mathematical world.

• Algebraic tools are ideal for use in standards work and
constructing large system. In both cases there is a need
for precise mathematical modeling that can scale up.
Once such specifications or systems are build less
technical users can use the pre-constructed models for
their own application.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Conclusion
• We did not contrast the relative value of proofs

and testing.
• We hope to extend ArgoUML and USE to

include a precise definition of OGC’s SFSS.
• In order to cognitively engage in the design we

feel that designers need to be proficient in
formal and semi-formal specifications. The semi-
formal approach can be used when a certain
looseness is acceptable and the formal
approach is need when precision and proof is
needed.

Mr. Patrick Browne, School of Computing
Dublin Institute of Technology

Conclusion
• Problems syntactic and semantic gaps:
• UML <–> Spatial/temporal concepts
• UML <–> CafeOBJ
• CafeOBJ <–> Spatial/temporal concepts
• Cognitive Theories <–> Software realization
• Gaps in specifications can lead to

interoperability problems.
• In theory these gaps can be bridged by truth

preserving morphisms found in the algebraic
approach.

	Modelling techniques for spatial information using free and open source tools
	Outline
	What is a GIS?
	Nature of geo-data and geo-processes
	Models
	Fundamental importance of a model
	Why Model?
	Why Model?
	Who Models?
	Levels of Modelling
	Levels of Modelling
	The value of a formal model
	Why an executable model?
	Approaches and Tools
	Object Oriented Tools
	Algebraic Specifications
	Simple Maps
	Description of Map
	Another Map
	Classes and Associations Map 1(a) in USE
	Object and Association Creation in USE
	Object Diagram Map 1(b) in USE
	Using Association Classes in USE
	OCL Constraints
	OCL Queries
	Logic in USE
	Summary of USE
	ArgoUML
	ArgoUML
	ArgoUML
	ArgoUML
	ArgoCASEGEO
	ArgoCASEGEO
	
	Packages and Stereotypes
	Packages and Stereotypes
	Profiles
	Profiles (complex)
	Spatial Relations
	Spatial Relations
	Spatial Relations
	Spatial Relations
	Spatial Relations
	Spatial Relations
	Spatial Relationships
	CafeOBJ
	CafeOBJ
	CafeOBJ
	Associations in CafeOBJ.
	CafeOBJ
	Axioms of Metric Spaces
	CafeOBJ Metric Spaces
	Querying in CafeOBJ
	Object Orientation in CafeOBJ
	CafeOBJ Specifications
	Signatures, Sentences, Models
	CafeOBJ Specifications
	CafeOBJ module expression
	Algebraic module expressions
	Summary of CafeOBJ
	UML v Algebraic specifications
	UML v Algebraic
	Algebraic Specifications
	Commercial System
	Interoperability between design tools and other systems.
	Interoperability between design tools and other systems.
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Conclusion

